Optimization of the Workpiece Location in a Machining Robotic Cell

One important issue in a machining robotic cell is the location of the workpiece with respect to the robot. The feasibility of the task, the quality of the final work and the energy consumption, just to mention a few, are all dependent upon it. This can be formulated as an optimization problem where...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced robotic systems 2011-12, Vol.8 (6)
Hauptverfasser: Lopes, António M., Pires, E.J. Solteiro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One important issue in a machining robotic cell is the location of the workpiece with respect to the robot. The feasibility of the task, the quality of the final work and the energy consumption, just to mention a few, are all dependent upon it. This can be formulated as an optimization problem where the objective functions are chosen in order to meet desired performance criteria. Typically, the complexity of the problems and the large number of optimization parameters that, usually, are involved, make the genetic algorithms an appropriate tool in this context. In this paper, two optimization problems are formulated: firstly, the power consumed by the manipulator is considered and the problem is solved using a single-objective genetic algorithm; then the stiffness of the manipulator is also included and the respective optimization problem is solved using a multi-objective genetic algorithm. Simulation results are presented for a parallel manipulator robotic cell.
ISSN:1729-8806
1729-8814
DOI:10.5772/45681