Co-precipitation Synthesized MnOx-CeO2 Mixed Oxides for NO Oxidation and Enhanced Resistance to Low Concentration of SO2 by Metal Addition
NO oxidation was conducted over MnOx-CeO2 catalysts, which were synthesized by the co-precipitation method. The calcination temperature and third metal doping were the main considerations. MnCe catalysts calcined at 350 °C and 450 °C attained the highest NO conversion efficiency, compared to 550 °C....
Gespeichert in:
Veröffentlicht in: | Catalysts 2019-06, Vol.9 (6), p.519 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | NO oxidation was conducted over MnOx-CeO2 catalysts, which were synthesized by the co-precipitation method. The calcination temperature and third metal doping were the main considerations. MnCe catalysts calcined at 350 °C and 450 °C attained the highest NO conversion efficiency, compared to 550 °C. XRD results suggested that the higher the calcination temperature, the higher the crystallization degree, which led to a negative effect on catalytic activity. Subsequently, Sn, Fe, Co, Cr, and Cu were separately doped into MnCe composites, but no improvement was observed for these trimetallic catalysts in NO conversion. Nevertheless, MnCeSn, MnCeFe, and MnCeCo still exhibited a desirable NO conversion efficiency, so they were tested under SO2 addition together with MnCe catalyst. Among them, MnCeFe exhibited the highest NO conversion after whole poisoning testing. XPS results indicated that Fe could protect Mn and Ce metal oxides from being reduced during SO2 poisoning process. Furthermore, in in-situ DRIFTS measurement, part of nitrate species maintained undestroyed on the MnCeFe catalyst surface after SO2 poisoning. These characteristics reinforced that Fe dropping would achieve better performance under SO2 atmosphere. |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal9060519 |