Icariin-conditioned serum combined with chitosan attenuates cartilage injury in rabbit knees with osteochondral defect
Knee osteoarthritis (KOA) is one of the most common degenerative diseases. Its development is closely related to cartilage injury and subchondral bone remodeling homeostasis. In the present study, we combined icariin-conditioned serum (ICS) with thiolated chitosan (CSSH), a material widely used in t...
Gespeichert in:
Veröffentlicht in: | Journal of orthopaedic surgery and research 2023-02, Vol.18 (1), p.125-125, Article 125 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Knee osteoarthritis (KOA) is one of the most common degenerative diseases. Its development is closely related to cartilage injury and subchondral bone remodeling homeostasis. In the present study, we combined icariin-conditioned serum (ICS) with thiolated chitosan (CSSH), a material widely used in tissue engineering for cartilage repair, to demonstrate its effect on the repair of cartilage damage and abnormal subchondral remodeling.
New Zealand rabbits were undergoing surgery for cartilage defect, and joint cavity injection was performed in each group with 0.5 mL normal saline (NS), ICS, CSSH and ICS-CSSH in the right joint every week for five times. Positioning performance was observed using VICON motion capture system. Glycosaminoglycans (GAG) secretion of articular fluid was assessed. Osteoarthritis Research Society International (OARSI) score and immunohistochemical (IHC) analysis including H&E, Safranin O and collagen II staining were employed to evaluate the morphologic repair of cartilage and subchondral bone. mRNA expression of COL2A1, MMP13 and ADAMTS5 was detected in chondrocytes from injury area.
ICS combined with CSSH attenuated cartilage injury and abnormal subchondral remodeling in rabbits with KOA. ICS and CSSH groups showed slight improvement in positioning performance, while ICS-CSSH group exhibited better positioning performance. ICS-CSSH group showed increased GAG secretion of articular fluid and expression of COL2A1 in articular chondrocytes. Furthermore, both macroscopic observation and IHC analysis showed femoral condyle in ICS-CSSH rabbits were repaired with more native cartilage and subchondral bone regeneration.
ICS combined with CSSH could promote the repair of osteochondral defect and stabilize subchondral bone remodeling in rabbit knees. |
---|---|
ISSN: | 1749-799X 1749-799X |
DOI: | 10.1186/s13018-023-03607-w |