Aptasensor Integrated with Two-Dimensional Nanomaterial for Selective and Sensitive Electrochemical Detection of Ketamine Drug

Ketamine is one of the most commonly abused drugs globally, posing a severe risk to social stability and human health, not only it is being used for recreational purposes, but this tasteless, odourless, and colourless drug also facilitates sexual assaults when it is mixed with drinks. Ketamine abuse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2024-02, Vol.15 (3), p.312
Hauptverfasser: Suleman, Shariq, Anzar, Nigar, Patil, Shikha, Shadan, Parvez, Suhel, Khanuja, Manika, Pilloton, Roberto, Narang, Jagriti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ketamine is one of the most commonly abused drugs globally, posing a severe risk to social stability and human health, not only it is being used for recreational purposes, but this tasteless, odourless, and colourless drug also facilitates sexual assaults when it is mixed with drinks. Ketamine abuse is a threat for safety, and this misuse is one of the main uses of the drug. The crucial role of ketamine detection is evident in its contributions to forensic investigations, law enforcement, drug control, workplace integrity, and public health. Electrochemical sensors have gained considerable interest among researchers due to their various advantages, such as low cost and specificity, and particularly screen-printed paper-based electrode (SPBE) biosensors have gained attention. Here, we reported an ePAD (electrochemical paper-based analytical device) for detecting the recreational drug ketamine. The advantages of using a paper-based electrode are that it reduces the electrode's production costs and is disposable and environmentally friendly. At the same time, nanographite sheets (NGSs) assisted in amplifying the signals generated in the cyclic voltammetry system when ketamine was present. This ePAD was developed by immobilizing a ketamine aptamer on NGS electrodes. The characterization of proper synthesized NGSs was performed by Scanning Electron Microscopy (SEM), XRD (X-ray Diffraction), Fourier-transform infrared spectroscopy (FTIR), and UV-Vis spectroscopy. Electrochemical techniques, including cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were employed to validate the results and confirm each attachment. Furthermore, the versatility of the proposed sensor was explored in both alcoholic and non-alcoholic beverages. The developed sensor showed a low LOD of about 0.01 μg/mL, and the linear range was between 0.01 and 5 μg/mL. This approach offers a valid diagnostic technique for onsite service with minimal resources. This cost effective and portable platform offers desirable characteristics like sensitivity and selectivity and can also be used for POC (point of care) testing to help in the quick identification of suspicious samples and for testing at trafficking sites, amusement parks, and by the side of the road.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi15030312