Effects of Binary Vectors Similarities on the Accuracy of Multi-Criteria Collaborative Filtering
Recommender systems offer tailored recommendations by employing various algorithms, and collaborative filtering is one of the well-known and commonly used of those. A traditional collaborative filtering system allows users to rate on a single criterion. However, a single criterion may be insufficien...
Gespeichert in:
Veröffentlicht in: | Sakarya university journal of computer and information sciences 2021-12, Vol.4 (3), p.287-301 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recommender systems offer tailored recommendations by employing various algorithms, and collaborative filtering is one of the well-known and commonly used of those. A traditional collaborative filtering system allows users to rate on a single criterion. However, a single criterion may be insufficient to indicate preferences in domains such as restaurants, movies, or tourism. Multi-criteria collaborative filtering provides a multi-dimensional rating option. In similarity-based multi-criteria collaborative filtering schemes, existing similarity methods utilize co-users or co-items regardless of how many there are. However, a high correlation with a few co-ratings does not always provide a reliable neighborhood. Therefore, it is very common, in both single- and multi-criteria collaborative filtering, to weight similarities with functions utilizing the number of co-ratings. Since multi-criteria collaborative filtering is yet growing, it lacks a comprehensive view of the effects of similarity weighting. This work studies multi-criteria collaborative filtering and the literature of binary vector similarities, which are frequently used for weighting, by giving a related taxonomy and conducts extensive experiments to analyze the effects of weighting similarities on item- and user-based multi-criteria collaborative filtering. Experimental findings suggest that prediction accuracy of item-based multi-criteria collaborative filtering can be boosted by especially binary vector similarity measures which do not consider mutual absences. |
---|---|
ISSN: | 2636-8129 2636-8129 |
DOI: | 10.35377/saucis...953348 |