Detection of QTLs for Yield Heterosis in Rice Using a RIL Population and Its Testcross Population

Analysis of the genetic basis of yield heterosis in rice was conducted by quantitative trait locus mapping using a set of 204 recombinant inbred lines (RILs), its testcross population, and mid-parent heterosis dataset (HMP). A total of 39 QTLs for six yield traits were detected, of which three were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of genomics 2016-01, Vol.2016 (2016), p.1-9
Hauptverfasser: Ying, Jie-Zheng, Zhang, Zhen-Hua, Fan, Ye-Yang, Huang, De-Run, Zhu, Yu-Jun, Zhuang, Jie-Yun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Analysis of the genetic basis of yield heterosis in rice was conducted by quantitative trait locus mapping using a set of 204 recombinant inbred lines (RILs), its testcross population, and mid-parent heterosis dataset (HMP). A total of 39 QTLs for six yield traits were detected, of which three were detected in all the datasets, ten were common to the RIL and testcross populations, six were common to the testcross and HMP, and 17, 2, and 1 were detected for RILs, testcrosses, and HMP, respectively. When a QTL was detected in both the RIL and testcross populations, the difference between TQ and IR24 and that between Zh9A/TQ and Zh9A/IR24 were always in the same direction, providing the potential to increase the yield of hybrids by increasing the yield of parental lines. Genetic action mode of the 39 QTLs was inferred by comparing their performances in RILs, testcrosses, and HMP. The genetic modes were additive for 17 QTLs, dominance for 12 QTLs, and overdominance for 10 QTLs. These results suggest that dominance and overdominance are the most important contributor to yield heterosis in rice, in which the accumulative effects of yield components play an important role.
ISSN:2314-436X
2314-4378
DOI:10.1155/2016/2587823