Extracellular Calcium Ion Concentration Regulates Chondrocyte Elastic Modulus and Adhesion Behavior

Extracellular calcium ion concentration levels increase in human osteoarthritic (OA) joints and contribute to OA pathogenesis. Given the fact that OA is a mechanical problem, the effect of the extracellular calcium level ([Ca2+]) on the mechanical behavior of primary human OA chondrocytes remains to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-09, Vol.22 (18), p.10034
Hauptverfasser: Shen, Xingyu, Hu, Liqiu, Li, Zhen, Wang, Liyun, Pang, Xiangchao, Wen, Chun-Yi, Tang, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extracellular calcium ion concentration levels increase in human osteoarthritic (OA) joints and contribute to OA pathogenesis. Given the fact that OA is a mechanical problem, the effect of the extracellular calcium level ([Ca2+]) on the mechanical behavior of primary human OA chondrocytes remains to be elucidated. Here, we measured the elastic modulus and cell–ECM adhesion forces of human primary chondrocytes with atomic force microscopy (AFM) at different extracellular calcium ion concentration ([Ca2+]) levels. With the [Ca2+] level increasing from the normal baseline level, the elastic modulus of chondrocytes showed a trend of an increase and a subsequent decrease at the level of [Ca2+], reaching 2.75 mM. The maximum increment of the elastic modulus of chondrocytes is a 37% increase at the peak point. The maximum unbinding force of cell-ECM adhesion increased by up to 72% at the peak point relative to the baseline level. qPCR and immunofluorescence also indicated that dose-dependent changes in the expression of myosin and integrin β1 due to the elevated [Ca2+] may be responsible for the variations in cell stiffness and cell-ECM adhesion. Scratch assay showed that the chondrocyte migration ability was modulated by cell stiffness and cell-ECM adhesion: as chondrocyte’s elastic modulus and cell-ECM adhesion force increased, the migration speed of chondrocytes decreased. Taken together, our results showed that [Ca2+] could regulate chondrocytes stiffness and cell-ECM adhesion, and consequently, influence cell migration, which is critical in cartilage repair.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms221810034