Effect of Butyl Paraben on Oxidative Stress in the Liver of Mauremys sinensis

Butyl paraben (BuP) has been widely used as a preservative in the cosmetics, food, and medicine industries. Recently, it has become a new pollutant and has attracted much attention. In order to evaluate the toxic effect of BuP on aquatic animals, Chinese striped-neck turtles (Mauremys sinensis) were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxics (Basel) 2023-11, Vol.11 (11), p.915
Hauptverfasser: Yin, Yaru, Xie, Zhenzi, Sun, Xiao, Wu, Xia, Zhang, Jiliang, Shi, Haitao, Ding, Li, Hong, Meiling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Butyl paraben (BuP) has been widely used as a preservative in the cosmetics, food, and medicine industries. Recently, it has become a new pollutant and has attracted much attention. In order to evaluate the toxic effect of BuP on aquatic animals, Chinese striped-neck turtles (Mauremys sinensis) were exposed to BuP solutions with different concentrations of 0, 5, 50, 500, and 5000 µg/L for 20 weeks. The results showed that with an increase in BuP concentration, the activity of antioxidant enzymes (SOD, CAT and GSH-PX) in liver decreased. The expression of key genes in the Nrf2-Keap1 signal pathways first increased and then decreased, while the expression of the HSP70 and HSP90 genes increased. In addition, the liver had an inflammatory reaction. The expression of the BAFF and IL-6 genes increased and then decreased with an increase in BuP concentration, while the expression of P50 and P65 increased significantly. Oxidative stress induced apoptosis, and the expression of pro-apoptosis genes (BAX, cytc, Caspase3 and Caspase9) increased, while the expression of the anti-apoptosis gene Bcl2 decreased. The results provide an important reference for the comprehensive ecological and health risk assessment of environmental BuP.
ISSN:2305-6304
2305-6304
DOI:10.3390/toxics11110915