Spectral representation of Matsubara n-point functions: Exact kernel functions and applications

In the field of quantum many-body physics, the spectral (or Lehmann) representation simplifies the calculation of Matsubara n n -point correlation functions if the eigensystem of a Hamiltonian is known. It is expressed via a universal kernel function and a system- and correlator-specific product of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SciPost physics 2023-11, Vol.15 (5), p.183, Article 183
Hauptverfasser: Halbinger, Johannes, Schneider, Benedikt, Sbierski, Björn
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the field of quantum many-body physics, the spectral (or Lehmann) representation simplifies the calculation of Matsubara n n -point correlation functions if the eigensystem of a Hamiltonian is known. It is expressed via a universal kernel function and a system- and correlator-specific product of matrix elements. Here we provide the kernel functions in full generality, for arbitrary n n , arbitrary combinations of bosonic or fermionic operators and an arbitrary number of anomalous terms. As an application, we consider bosonic 3- and 4-point correlation functions for the fermionic Hubbard atom and a free spin of length S S , respectively.
ISSN:2542-4653
2542-4653
DOI:10.21468/SciPostPhys.15.5.183