Spectral representation of Matsubara n-point functions: Exact kernel functions and applications
In the field of quantum many-body physics, the spectral (or Lehmann) representation simplifies the calculation of Matsubara n n -point correlation functions if the eigensystem of a Hamiltonian is known. It is expressed via a universal kernel function and a system- and correlator-specific product of...
Gespeichert in:
Veröffentlicht in: | SciPost physics 2023-11, Vol.15 (5), p.183, Article 183 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the field of quantum many-body physics, the spectral (or Lehmann) representation simplifies the calculation of Matsubara
n
n
-point correlation functions if the eigensystem of a Hamiltonian is known. It is expressed via a universal kernel function and a system- and correlator-specific product of matrix elements. Here we provide the kernel functions in full generality, for arbitrary
n
n
, arbitrary combinations of bosonic or fermionic operators and an arbitrary number of anomalous terms. As an application, we consider bosonic 3- and 4-point correlation functions for the fermionic Hubbard atom and a free spin of length
S
S
, respectively. |
---|---|
ISSN: | 2542-4653 2542-4653 |
DOI: | 10.21468/SciPostPhys.15.5.183 |