Light-driven molecular switch for reconfigurable spin filters

Artificial molecular switches and machines that enable the directional movements of molecular components by external stimuli have undergone rapid advances over the past several decades. Particularly, overcrowded alkene-based artificial molecular motors are highly attractive from the viewpoint of chi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-06, Vol.10 (1), p.2455-2455, Article 2455
Hauptverfasser: Suda, Masayuki, Thathong, Yuranan, Promarak, Vinich, Kojima, Hirotaka, Nakamura, Masakazu, Shiraogawa, Takafumi, Ehara, Masahiro, Yamamoto, Hiroshi M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Artificial molecular switches and machines that enable the directional movements of molecular components by external stimuli have undergone rapid advances over the past several decades. Particularly, overcrowded alkene-based artificial molecular motors are highly attractive from the viewpoint of chirality switching during rotational steps. However, the integration of these molecular switches into solid-state devices is still challenging. Herein, we present an example of a solid-state spin-filtering device that can switch the spin polarization direction by light irradiation or thermal treatment. This device utilizes the chirality inversion of molecular motors as a light-driven reconfigurable spin filter owing to the chiral-induced spin selectivity effect. Through this device, we found that the flexibility at the molecular scale is essential for the electrodes in solid-state devices using molecular machines. The present results are beneficial to the development of solid-state functionalities emerging from nanosized motions of molecular switches. The chirality provides new route for organic materials to be implemented in the spintronics applications. Here the authors show a solid-state spin-filtering device in an organic spin-valve structure enabled by light irradiation induced change in the chirality of molecule.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-10423-6