In vivo spatiotemporal control of voltage-gated ion channels by using photoactivatable peptidic toxins

Photoactivatable drugs targeting ligand-gated ion channels open up new opportunities for light-guided therapeutic interventions. Photoactivable toxins targeting ion channels have the potential to control excitable cell activities with low invasiveness and high spatiotemporal precision. As proof-of-c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-01, Vol.13 (1), p.417-13, Article 417
Hauptverfasser: Montnach, Jérôme, Blömer, Laila Ananda, Lopez, Ludivine, Filipis, Luiza, Meudal, Hervé, Lafoux, Aude, Nicolas, Sébastien, Chu, Duong, Caumes, Cécile, Béroud, Rémy, Jopling, Chris, Bosmans, Frank, Huchet, Corinne, Landon, Céline, Canepari, Marco, De Waard, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photoactivatable drugs targeting ligand-gated ion channels open up new opportunities for light-guided therapeutic interventions. Photoactivable toxins targeting ion channels have the potential to control excitable cell activities with low invasiveness and high spatiotemporal precision. As proof-of-concept, we develop HwTxIV-Nvoc, a UV light-cleavable and photoactivatable peptide that targets voltage-gated sodium (Na V ) channels and validate its activity in vitro in HEK293 cells, ex vivo in brain slices and in vivo on mice neuromuscular junctions. We find that HwTxIV-Nvoc enables precise spatiotemporal control of neuronal Na V channel function under all conditions tested. By creating multiple photoactivatable toxins, we demonstrate the broad applicability of this toxin-photoactivation technology. Photoactivable toxins targeting ion channels have great potential to control cell activity. Here the authors report HwTxIV-Nvoc, a UV light-cleavable and photoactivatable peptide that targets voltage-gated sodium channels; they validate this in cells, brain slices and in vivo on mice neuromuscular junctions.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-27974-w