Duals of Feynman Integrals. Part II. Generalized unitarity

A bstract The first paper of this series introduced objects (elements of twisted relative cohomology) that are Poincaré dual to Feynman integrals. We show how to use the pairing between these spaces — an algebraic invariant called the intersection number — to express a scattering amplitude over a mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2022-04, Vol.2022 (4), p.78-64, Article 78
Hauptverfasser: Caron-Huot, Simon, Pokraka, Andrzej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract The first paper of this series introduced objects (elements of twisted relative cohomology) that are Poincaré dual to Feynman integrals. We show how to use the pairing between these spaces — an algebraic invariant called the intersection number — to express a scattering amplitude over a minimal basis of integrals, bypassing the generation of integration-by-parts identities. The initial information is the integrand on cuts of various topologies, computable as products of on-shell trees, providing a systematic approach to generalized unitarity. We give two algorithms for computing the multi-variate intersection number. As a first example, we compute 4- and 5-point gluon amplitudes in generic space-time dimension. We also examine the 4-dimensional limit of our formalism and provide prescriptions for extracting rational terms.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP04(2022)078