Correspondence Rules for SU(1,1) Quasidistribution Functions and Quantum Dynamics in the Hyperbolic Phase Space

We derive the explicit differential form for the action of the generators of the SU(1,1) group on the corresponding s-parametrized symbols. This allows us to obtain evolution equations for the phase-space functions on the upper sheet of the two-sheet hyperboloid and analyze their semiclassical limit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2022-10, Vol.24 (11), p.1580
Hauptverfasser: Baltazar, Miguel, Valtierra, Iván F., Klimov, Andrei B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive the explicit differential form for the action of the generators of the SU(1,1) group on the corresponding s-parametrized symbols. This allows us to obtain evolution equations for the phase-space functions on the upper sheet of the two-sheet hyperboloid and analyze their semiclassical limits. Dynamics of quantum systems with SU(1,1) symmetry governed by compact and non-compact Hamiltonians are discussed in both quantum and semiclassical regimes.
ISSN:1099-4300
1099-4300
DOI:10.3390/e24111580