Semi-topological properties

A property preserved under a semi-homeomorphism is said to be a seml-topologJcal property. In the present paper we prove the following results: (1) A topological property P is semi-topological if and only if the statement '(X,T) has P if and only if (X.F(T)) has P' is true where F(T) is th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Mathematics and Mathematical Sciences 1992-01, Vol.1992 (2), p.267-272
Hauptverfasser: Nayar, Bhamini M. P., Arya, S. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A property preserved under a semi-homeomorphism is said to be a seml-topologJcal property. In the present paper we prove the following results: (1) A topological property P is semi-topological if and only if the statement '(X,T) has P if and only if (X.F(T)) has P' is true where F(T) is the finest topology on X having the same family of semi-open sets as (X.T), (2) if P is a topological property being minimal P is semi-topologlcal if and only if for each minimal P space (X,T), T= F(T).
ISSN:0161-1712
1687-0425
DOI:10.1155/S0161171292000346