Semi-topological properties
A property preserved under a semi-homeomorphism is said to be a seml-topologJcal property. In the present paper we prove the following results: (1) A topological property P is semi-topological if and only if the statement '(X,T) has P if and only if (X.F(T)) has P' is true where F(T) is th...
Gespeichert in:
Veröffentlicht in: | International Journal of Mathematics and Mathematical Sciences 1992-01, Vol.1992 (2), p.267-272 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A property preserved under a semi-homeomorphism is said to be a seml-topologJcal property. In the present paper we prove the following results: (1) A topological property P is semi-topological if and only if the statement '(X,T) has P if and only if (X.F(T)) has P' is true where F(T) is the finest topology on X having the same family of semi-open sets as (X.T), (2) if P is a topological property being minimal P is semi-topologlcal if and only if for each minimal P space (X,T), T= F(T). |
---|---|
ISSN: | 0161-1712 1687-0425 |
DOI: | 10.1155/S0161171292000346 |