Maximum Entropy Criterion for Moment Indeterminacy of Probability Densities
We deal with absolutely continuous probability distributions with finite all-positive integer-order moments. It is well known that any such distribution is either uniquely determined by its moments (M-determinate), or it is non-unique (M-indeterminate). In this paper, we follow the maximum entropy a...
Gespeichert in:
Veröffentlicht in: | Entropy (Basel, Switzerland) Switzerland), 2024-01, Vol.26 (2), p.121 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We deal with absolutely continuous probability distributions with finite all-positive integer-order moments. It is well known that any such distribution is either uniquely determined by its moments (M-determinate), or it is non-unique (M-indeterminate). In this paper, we follow the maximum entropy approach and establish a new criterion for the M-indeterminacy of distributions on the positive half-line (Stieltjes case). Useful corollaries are derived for M-indeterminate distributions on the whole real line (Hamburger case). We show how the maximum entropy is related to the symmetry property and the M-indeterminacy. |
---|---|
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e26020121 |