Maximum Entropy Criterion for Moment Indeterminacy of Probability Densities

We deal with absolutely continuous probability distributions with finite all-positive integer-order moments. It is well known that any such distribution is either uniquely determined by its moments (M-determinate), or it is non-unique (M-indeterminate). In this paper, we follow the maximum entropy a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2024-01, Vol.26 (2), p.121
Hauptverfasser: Stoyanov, Jordan M, Tagliani, Aldo, Novi Inverardi, Pier Luigi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We deal with absolutely continuous probability distributions with finite all-positive integer-order moments. It is well known that any such distribution is either uniquely determined by its moments (M-determinate), or it is non-unique (M-indeterminate). In this paper, we follow the maximum entropy approach and establish a new criterion for the M-indeterminacy of distributions on the positive half-line (Stieltjes case). Useful corollaries are derived for M-indeterminate distributions on the whole real line (Hamburger case). We show how the maximum entropy is related to the symmetry property and the M-indeterminacy.
ISSN:1099-4300
1099-4300
DOI:10.3390/e26020121