Sustainable Coating Based on Zwitterionic Functionalized Polyurushiol with Antifouling and Antibacterial Properties

Zwitterionic polymer coatings facilitate the formation of hydration layers via electrostatic interactions on their surfaces and have demonstrated efficacy in preventing biofouling. They have emerged as a promising class of marine antifouling materials. However, designing multifunctional, environment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2023-12, Vol.28 (24), p.8040
Hauptverfasser: Xu, Kaiyue, Xie, Huimin, Sun, Chenyi, Lin, Wenyan, You, Zixuan, Zheng, Guocai, Zheng, Xiaoxiao, Xu, Yanlian, Chen, Jipeng, Lin, Fengcai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zwitterionic polymer coatings facilitate the formation of hydration layers via electrostatic interactions on their surfaces and have demonstrated efficacy in preventing biofouling. They have emerged as a promising class of marine antifouling materials. However, designing multifunctional, environmentally friendly, and natural products-derived zwitterionic polymer coatings that simultaneously resist biofouling, inhibit protein adhesion, exhibit strong antibacterial properties, and reduce algal adhesion is a significant challenge. This study employed two diisocyanates as crosslinkers and natural urushiol and ethanolamine as raw materials. The coupling reaction of diisocyanates with hydroxyl groups was employed to synthesize urushiol-based precursors. Subsequently, sulfobetaine moieties were introduced into the urushiol-based precursors, developing two environmentally friendly and high-performance zwitterionic-functionalized polyurushiol antifouling coatings, denoted as HUDM-SB and IPUDM-SB. The sulfobetaine-functionalized polyurushiol coating exhibited significantly enhanced hydrophilicity, with the static water contact angle reduced to less than 60°, and demonstrated excellent resistance to protein adhesion. IPUDM-SB exhibited antibacterial efficacy up to 99.9% against common Gram-negative bacteria ( and ) and Gram-positive bacteria ( and . sp.). HUDM-SB achieved antibacterial efficacy exceeding 95.0% against four bacterial species. Furthermore, the sulfobetaine moieties on the surfaces of the IPUDM-SB and HUDM-SB coatings effectively inhibited the growth and reproduction of algal cells by preventing microalgae adhesion. This zwitterionic-functionalized polyurushiol coating does not contain antifouling agents, making it a green, environmentally friendly, and high-performance biomaterial-based solution for marine antifouling.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules28248040