Properties of Laser Additive Deposited Metallic Powder of Inconel 625

Paper presents results of laser additive manufacturing. Deposition of nickel based super alloy Inconel 625 was performed. Laser metal deposition is advanced manufacturing process dedicated for prototyping and low scale series production. Inconel 625 is nickel based super alloy, with high heat resist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Open Engineering (Warsaw) 2020-06, Vol.10 (1), p.484-490
Hauptverfasser: Danielewski, Hubert, Antoszewski, Bogdan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Paper presents results of laser additive manufacturing. Deposition of nickel based super alloy Inconel 625 was performed. Laser metal deposition is advanced manufacturing process dedicated for prototyping and low scale series production. Inconel 625 is nickel based super alloy, with high heat resistance properties. Therefore due material properties and chemical composition is characterized as a difficult to machining [ , ]. Additive manufacturing process using focused photons beam for selective deposition of metallic powder in laser engineered net shaping (LENS) method can be used as alternative technology. High energy density of controllable laser beam combining with coaxial delivery system allow to precise deposited metallic powder. Manufacturing process are based on selective melting of additional material using laser radiation and crystallization process. An additional material in form of filler wire as well as metallic powder can be used. Advantages of using metallic powder are higher level of process control, nevertheless adequate selection of process parameters are required. High energy density of laser beam and rapid crystallization process affect on metallographic structure of deposited material. Thermal energy absorbed in material affect on phase transformation.Molten powder mixing with base material changing metallographic structure. Chemical composition of obtained overlay weld are combination of base and additive material. Therefore to achieve stable crystallization process chemical composition of additive material wassimilar to base material. Additional alloying elements could affect on mechanical properties. Deposition process using TruLaserCell 1005 laser machine was performed. To determine properties of manufactured material metallographic analysis and destructive tests were performed.
ISSN:2391-5439
2391-5439
DOI:10.1515/eng-2020-0046