Using of neural network to simulation of the biodiesel production process from waste oil

This study deals with artificial neural network (ANN) modeling of a biodiesel production using waste cooking oil to predict the biodiesel purity. developed ANN was a feed forward back propagation network with one input, one hidden and one output layers. The input parameters for the ANN were methanol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:مجله مدل سازی در مهندسی 2015-01, Vol.12 (39), p.143-149
1. Verfasser: hossein bagherpour
Format: Artikel
Sprache:per
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study deals with artificial neural network (ANN) modeling of a biodiesel production using waste cooking oil to predict the biodiesel purity. developed ANN was a feed forward back propagation network with one input, one hidden and one output layers. The input parameters for the ANN were methanol/oil molar ratio (3:1â9:1), temperature (45â65â‌â‌â‌â‌â‌â‌â‌â‌â‌â«âªâ­ °C), and mixing intensity (200â600 rpm) and the output parameter was biodiesel purity. The biodiesel with best purity was produced at methanol/oil molar ratio, of 6:1 mixing intensity, of 600 rpm and reaction temperature of 65 °C. Different transfer functions and several rules were used to assess the percentage error between the desired and the predicted values. It was observed that the ANN model can predict the biodiesel yield quite well with correlation coefficient (R) 0.99966. We can conclude that ANNs can be used to predict the biodiesel yield from used waste cooking oil.
ISSN:2008-4854
2783-2538
DOI:10.22075/jme.2017.1697