Large-scale 3-D interconnected Ni nanotube networks with controlled structural and magnetic properties
Large-scale, electrically interconnected three-dimensional (3-D) Ni crossed nanotube networks have been fabricated using an electrochemical dealloying method within the crossed nanopores of polymer host membranes. This method paves the way for the easy and cost-effective fabrication of 3-D magnetic...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2018-09, Vol.8 (1), p.14555-11, Article 14555 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Large-scale, electrically interconnected three-dimensional (3-D) Ni crossed nanotube networks have been fabricated using an electrochemical dealloying method within the crossed nanopores of polymer host membranes. This method paves the way for the easy and cost-effective fabrication of 3-D magnetic NT networks with precise spatial arrangement and diameter and wall thickness of 10–100 nm controlled individually. The excellent control over geometrical parameters and morphological features of the Ni crossed nanotube networks leads to tunable magnetic and magneto-transport properties. Particularly, the low field magneto-transport behavior is consistent with the expected vortex-like states formed in different segments of the nanotube scaffold, whereas nucleation of domain walls at the intersection of the nanowire segments play a dominant role in the solid crossed nanowire networks counterpart. The present 3-D networks of nanomagnets are of special interest due to their potential for memory devices, computing architectures, sensing and biomedical applications. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-018-32437-8 |