Potential Predictability of Seasonal Global Precipitation Associated with ENSO and MJO
A covariance decomposition method is applied to a monthly global precipitation dataset to decompose the interannual variability in the seasonal mean time series into an unpredictable component related to “weather noise” and to a potentially predictable component related to slowly varying boundary fo...
Gespeichert in:
Veröffentlicht in: | Atmosphere 2023-04, Vol.14 (4), p.695 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A covariance decomposition method is applied to a monthly global precipitation dataset to decompose the interannual variability in the seasonal mean time series into an unpredictable component related to “weather noise” and to a potentially predictable component related to slowly varying boundary forcing and low-frequency internal dynamics. The “potential predictability” is then defined as the fraction of the total interannual variance accounted for by the latter component. In tropical oceans (30° E–0° W, 30° S–30° N), the consensus is that the El Nino-Southern Oscillation (ENSO, with 4–8 year cycles) is a dominant driver of the potentially predictable component, while the Madden-Julian Oscillation (MJO, with 30–90 days cycles) is a dominant driver of the unpredictable component. In this study, the consensus is verified by using the Nino3-4 SST index and a popular MJO index. It is confirmed that Nino3-4 SST does indeed explain a significant part of the potential predictable component, but only limited variability of the unpredictable component is explained by the MJO index. This raises the question of whether the MJO is dominant in the variability of the unpredictable component of the precipitation, or the current MJO indexes do not represent MJO variability well. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos14040695 |