Effect of Stirrup on Bond Strength Degradation in Concrete Cracked by Expansion Agent Filled Pipes

The corrosion of rebars in reinforced concrete structures cracks the concrete, which leads to the degradation of the bond strength between the rebar and concrete. Since bond deterioration can menace structural safety, bond strength evaluation is essential for proper maintenance. In this study, the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-10, Vol.11 (19), p.8874
Hauptverfasser: Syll, Amadou Sakhir, Shimokobe, Hiroki, Kanakubo, Toshiyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The corrosion of rebars in reinforced concrete structures cracks the concrete, which leads to the degradation of the bond strength between the rebar and concrete. Since bond deterioration can menace structural safety, bond strength evaluation is essential for proper maintenance. In this study, the authors investigated bond strength degradation by conducting pull-out tests on concrete specimens, with induced crack width and stirrups ratio being the principal parameters. An expansion agent-filled pipe (EAFP) simulates cracks due to the volumetric expansion of the corroded rebar. One advantage of this method is that it allows one to focus on the single effect of an induced crack. The pull-out tests on 36 specimens show that stirrups’ confinement significantly influences the bond degradation due to induced cracks. The authors proposed an empirical model for the degradation of bond strength, considering the impact of induced crack width. The result shows that the induced crack by EAFP can quantify the exclusive consequence of corrosion on bonds. Furthermore, the coefficient of variation is 12% for specimens without stirrup from Law et al. For specimen without and with stirrup from Lin et al., the coefficients of variation are 14% and 17%. The proposed model can predict the corroded specimen from the literature with reasonable accuracy.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11198874