Bayesian PBPK modeling using R/Stan/Torsten and Julia/SciML/Turing.Jl

Physiologically‐based pharmacokinetic (PBPK) models are mechanistic models that are built based on an investigator's prior knowledge of the in vivo system of interest. Bayesian inference incorporates an investigator's prior knowledge of parameters while using the data to update this knowle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CPT: Pharmacometrics & Systems Pharmacology 2023-03, Vol.12 (3), p.300-310
Hauptverfasser: Elmokadem, Ahmed, Zhang, Yi, Knab, Timothy, Jordie, Eric, Gillespie, William R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Physiologically‐based pharmacokinetic (PBPK) models are mechanistic models that are built based on an investigator's prior knowledge of the in vivo system of interest. Bayesian inference incorporates an investigator's prior knowledge of parameters while using the data to update this knowledge. As such, Bayesian tools are well‐suited to infer PBPK model parameters using the strong prior knowledge available while quantifying the uncertainty on these parameters. This tutorial demonstrates a full population Bayesian PBPK analysis framework using R/Stan/Torsten and Julia/SciML/Turing.jl.
ISSN:2163-8306
2163-8306
DOI:10.1002/psp4.12926