ALS-associated KIF5A mutations abolish autoinhibition resulting in a toxic gain of function

Understanding the pathogenic mechanisms of disease mutations is critical to advancing treatments. ALS-associated mutations in the gene encoding the microtubule motor KIF5A result in skipping of exon 27 (KIF5AΔExon27) and the encoding of a protein with a novel 39 amino acid residue C-terminal sequenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports (Cambridge) 2022-04, Vol.39 (1), p.110598-110598, Article 110598
Hauptverfasser: Baron, Desiree M., Fenton, Adam R., Saez-Atienzar, Sara, Giampetruzzi, Anthony, Sreeram, Aparna, Shankaracharya, Keagle, Pamela J., Doocy, Victoria R., Smith, Nathan J., Danielson, Eric W., Andresano, Megan, McCormack, Mary C., Garcia, Jaqueline, Bercier, Valérie, Van Den Bosch, Ludo, Brent, Jonathan R., Fallini, Claudia, Traynor, Bryan J., Holzbaur, Erika L.F., Landers, John E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the pathogenic mechanisms of disease mutations is critical to advancing treatments. ALS-associated mutations in the gene encoding the microtubule motor KIF5A result in skipping of exon 27 (KIF5AΔExon27) and the encoding of a protein with a novel 39 amino acid residue C-terminal sequence. Here, we report that expression of ALS-linked mutant KIF5A results in dysregulated motor activity, cellular mislocalization, altered axonal transport, and decreased neuronal survival. Single-molecule analysis revealed that the altered C terminus of mutant KIF5A results in a constitutively active state. Furthermore, mutant KIF5A possesses altered protein and RNA interactions and its expression results in altered gene expression/splicing. Taken together, our data support the hypothesis that causative ALS mutations result in a toxic gain of function in the intracellular motor KIF5A that disrupts intracellular trafficking and neuronal homeostasis. [Display omitted] •ALS-associated KIF5A mutations result in a common novel toxic C-terminal sequence•ALS mutant KIF5A lacks autoinhibition resulting in a constitutively active kinesin•ALS mutant KIF5A displays a distal accumulation and altered axonal transport•ALS-associated KIF5A mutations result in novel protein and RNA interactions ALS-associated KIF5A mutations alter the C terminus, the effect of which had yet to be elucidated. Here, Baron et al. discover that these mutations impair KIF5A autoinhibition resulting in a hyperactive kinesin that displays altered protein function and aberrant cellular interactions. These observations shed light on the mechanisms contributing to ALS.
ISSN:2211-1247
2211-1247
DOI:10.1016/j.celrep.2022.110598