New cerebrovascular agent with hypotensive activity
Introduction: In cerebrovascular disorders, special attention is paid to a hypertensive cerebrovascular crisis, which combines a vascular injury of the brain and hypertension. The paper studies the cerebrovascular properties of the calcium channel blocker of S-Amlodipine nicotinate antihypertensive...
Gespeichert in:
Veröffentlicht in: | Research results in pharmacology (English ed.) 2019-06, Vol.5 (2), p.71-77 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Introduction: In cerebrovascular disorders, special attention is paid to a hypertensive cerebrovascular crisis, which combines a vascular injury of the brain and hypertension. The paper studies the cerebrovascular properties of the calcium channel blocker of S-Amlodipine nicotinate antihypertensive agent.
Materials and methods: Tests were performed on 96 nonlinear male rats, measuring local blood flow in the cerebral cortex in 36 awake animals, using a laser Doppler flowmeter. Cerebral circulation was recorded in the animals when modeling ischemic and hemorrhagic brain injuries.
Results and discussion: S-Amlodipine nicotinate (0.1 mg/kg i/v) shows a pronounced cerebrovascular activity in the models of ischemic and hemorrhagic injuries of the brain. In terms of the vasodilating effect in ischemic brain injury, the drug is comparable to mexidol, nimodipine, picamilon, but is superior to nimodipine and picamilon in terms of duration of action, and in the model of hemorrhagic stroke, S-Amlodipine nicotinate is superior to nimodipine and is comparable to picamilon and mexidol. The analysis of the mechanism of action of the agent revealed the participation of GABA A-receptors in the implementation of cerebrovascular properties of the agent.
Conclusion: Significant cerebrovascular activity of S-Amlodipine nicotinate (0.1 mg/kg i/v) antihypertensive agent was revealed. The presence of GABAergic mechanism on cerebral blood flow in the agent action along with blockade of slow calcium channels ensures its high efficacy in treatment of both ischemic and hemorrhagic brain injuries |
---|---|
ISSN: | 2658-381X 2658-381X |
DOI: | 10.3897/rrpharmacology.5.35392 |