Ultrafast Demagnetization Measurements Using Extreme Ultraviolet Light: Comparison of Electronic and Magnetic Contributions
Ultrashort pulses of extreme ultraviolet light from high-harmonic generation are a new tool for probing coupled charge, spin, and phonon dynamics with element specificity, attosecond pump-probe synchronization, and time resolution of a few femtoseconds in a tabletop apparatus. In this paper, we addr...
Gespeichert in:
Veröffentlicht in: | Physical review. X 2012, Vol.2 (1), p.011005, Article 011005 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ultrashort pulses of extreme ultraviolet light from high-harmonic generation are a new tool for probing coupled charge, spin, and phonon dynamics with element specificity, attosecond pump-probe synchronization, and time resolution of a few femtoseconds in a tabletop apparatus. In this paper, we address an important question in magneto-optics that has implications for understanding magnetism on the fastest time scales: Is the signal from the transverse magneto-optical Kerr effect at the M2,3 edges of a magnetic material purely magnetic or is it perturbed by nonmagnetic artifacts? Our measurements demonstrate conclusively that transverse magneto-optical Kerr measurements at the M2,3 edges sensitively probe the magnetic state, with almost negligible contributions from the transient variation of the refractive index by the nonequilibrium hot-electron distribution. In addition, we compare pump-probe demagnetization dynamics measured by both high harmonics and conventional visible-wavelength magneto-optics and find that the measured demagnetization times are in agreement. |
---|---|
ISSN: | 2160-3308 2160-3308 |
DOI: | 10.1103/PhysRevX.2.011005 |