Digital Eye-Movement Outcomes (DEMOs) as Biomarkers for Neurological Conditions: A Narrative Review
Eye-movement assessment is a key component of neurological evaluation, offering valuable insights into neural deficits and underlying mechanisms. This narrative review explores the emerging subject of digital eye-movement outcomes (DEMOs) and their potential as sensitive biomarkers for neurological...
Gespeichert in:
Veröffentlicht in: | Big data and cognitive computing 2024-12, Vol.8 (12), p.198 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Eye-movement assessment is a key component of neurological evaluation, offering valuable insights into neural deficits and underlying mechanisms. This narrative review explores the emerging subject of digital eye-movement outcomes (DEMOs) and their potential as sensitive biomarkers for neurological impairment. Eye tracking has become a useful method for investigating visual system functioning, attentional processes, and cognitive mechanisms. Abnormalities in eye movements, such as altered saccadic patterns or impaired smooth pursuit, can act as important diagnostic indicators for various neurological conditions. The non-invasive nature, cost-effectiveness, and ease of implementation of modern eye-tracking systems makes it particularly attractive in both clinical and research settings. Advanced digital eye-tracking technologies and analytical methods enable precise quantification of eye-movement parameters, complementing subjective clinical evaluations with objective data. This review examines how DEMOs could contribute to the localisation and diagnosis of neural impairments, potentially serving as useful biomarkers. By comprehensively exploring the role of eye-movement assessment, this review aims to highlight the common eye-movement deficits seen in neurological injury and disease by using the examples of mild traumatic brain injury and Parkinson’s Disease. This review also aims to enhance the understanding of the potential use of DEMOs in diagnosis, monitoring, and management of neurological disorders, ultimately improving patient care and deepening our understanding of complex neurological processes. Furthermore, we consider the broader implications of this technology in unravelling the complexities of visual processing, attention mechanisms, and cognitive functions. This review summarises how DEMOs could reshape our understanding of brain health and allow for more targeted and effective neurological interventions. |
---|---|
ISSN: | 2504-2289 2504-2289 |
DOI: | 10.3390/bdcc8120198 |