On the Number of Disjoint 4-Cycles in Regular Tournaments

In this paper, we prove that for an integer ≥ 1, every regular tournament of degree 3 − 1 contains at least disjoint directed 4-cycles. Our result is an improvement of Lichiardopol’s theorem when taking = 4 [Discrete Math. (2010) 2567–2570]: for given integers ≥ 3 and ≥ 1, a tournament with minimum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discussiones Mathematicae. Graph Theory 2018-01, Vol.38 (2), p.491-498
Hauptverfasser: Ma, Fuhong, Yan, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove that for an integer ≥ 1, every regular tournament of degree 3 − 1 contains at least disjoint directed 4-cycles. Our result is an improvement of Lichiardopol’s theorem when taking = 4 [Discrete Math. (2010) 2567–2570]: for given integers ≥ 3 and ≥ 1, a tournament with minimum out-degree and in-degree both at least ( − 1) − 1 contains at least disjoint directed cycles of length
ISSN:1234-3099
2083-5892
DOI:10.7151/dmgt.2020