Pharmacological induction of selective endoplasmic reticulum retention as a strategy for cancer therapy

The integrated stress response (ISR) converges on eIF2α phosphorylation to regulate protein synthesis. ISR is activated by several stress conditions, including endoplasmic reticulum (ER) stress, executed by protein kinase R-like endoplasmic reticulum kinase (PERK). We report that ER stress combined...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-03, Vol.11 (1), p.1304-1304, Article 1304
Hauptverfasser: Mahameed, Mohamed, Boukeileh, Shatha, Obiedat, Akram, Darawshi, Odai, Dipta, Priya, Rimon, Amit, McLennan, Gordon, Fassler, Rosi, Reichmann, Dana, Karni, Rotem, Preisinger, Christian, Wilhelm, Thomas, Huber, Michael, Tirosh, Boaz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The integrated stress response (ISR) converges on eIF2α phosphorylation to regulate protein synthesis. ISR is activated by several stress conditions, including endoplasmic reticulum (ER) stress, executed by protein kinase R-like endoplasmic reticulum kinase (PERK). We report that ER stress combined with ISR inhibition causes an impaired maturation of several tyrosine kinase receptors (RTKs), consistent with a partial block of their trafficking from the ER to the Golgi. Other proteins mature or are secreted normally, indicating selective retention in the ER (sERr). sERr is relieved upon protein synthesis attenuation and is accompanied by the generation of large mixed disulfide bonded complexes, including ERp44. sERr was pharmacologically recapitulated by combining the HIV-protease inhibitor nelfinavir with ISRIB, an experimental drug that inhibits ISR. Nelfinavir/ISRIB combination is highly effective to inhibit the growth of RTK-addicted cell lines and hepatocellular (HCC) cells in vitro and in vivo. Thus, pharmacological sERr can be utilized as a modality for cancer treatment. Inhibition of PERK, an endoplasmic reticulum (ER) unfolded protein response (UPR) protein, is a potential pharmacological target for cancer treatment. Here, the authors show that inhibition of PERK under ER stress affects trafficking from the ER to the surface of several key receptor tyrosine kinases, suggesting a selective ER retention.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-15067-5