The adhesion and migration of microglia to β-amyloid (Aβ) is decreased with aging and inhibited by Nogo/NgR pathway

Alzheimer's disease is characterized by progressive accumulation of β-amyloid (Aβ)-containing amyloid plaques, and microglia play a critical role in internalization and degradation of Aβ. Our previous research confirmed that Nogo-66 binding to Nogo receptors (NgR) expressed on microglia inhibit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroinflammation 2018-07, Vol.15 (1), p.210-210, Article 210
Hauptverfasser: Fang, Yinquan, Wang, Jianing, Yao, Lemeng, Li, Chenhui, Wang, Jing, Liu, Yuan, Tao, Xia, Sun, Hao, Liao, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alzheimer's disease is characterized by progressive accumulation of β-amyloid (Aβ)-containing amyloid plaques, and microglia play a critical role in internalization and degradation of Aβ. Our previous research confirmed that Nogo-66 binding to Nogo receptors (NgR) expressed on microglia inhibits cell adhesion and migration in vitro. The adhesion and migration of microglia isolated from WT and APP/PS1 mice from different ages were measured by adhesion assays and transwells. After NEP1-40 (a competitive antagonist of Nogo/NgR pathway) was intracerebroventricularly administered via mini-osmotic pumps for 2 months in APP/PS1 transgenic mice, microglial recruitment toward Aβ deposits and CD36 expression were determined. In this paper, we found that aging led to a reduction of microglia adhesion and migration to fAβ in WT and APP/PS1 mice. The adhesion and migration of microglia to fAβ were downregulated by the Nogo, which was mediated by NgR, and the increased inhibitory effects of the Nogo could be observed in aged mice. Moreover, Rho GTPases contributed to the effects of the Nogo on adhesion and migration of microglia to fAβ by regulating cytoskeleton arrangement. Furthermore, blocking the Nogo/NgR pathway enhanced recruitment of microglia toward Aβ deposits and expression of CD36 in APP/PS1 mice. Taken together, Nogo/NgR pathway could take part in Aβ pathology in AD by modulating microglial adhesion and migration to Aβ and the Nogo/NgR pathway might be an important target for treating AD.
ISSN:1742-2094
1742-2094
DOI:10.1186/s12974-018-1250-1