A Method for Improving Permeability Accuracy of Tight Sandstone Gas Reservoirs Based on Core Data and NMR Logs

Accurate calculation of the permeability of tight sandstone gas reservoirs has been a challenge, due to the enhanced effect of pore structure. Reservoir permeability with the same porosity and different pore structure often varies greatly. The permeability estimated by the traditional core sample re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2019-07, Vol.12 (15), p.2859
Hauptverfasser: Liu, Liang, Pan, Heping, Deng, Chengxiang, Huang, Guoshu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate calculation of the permeability of tight sandstone gas reservoirs has been a challenge, due to the enhanced effect of pore structure. Reservoir permeability with the same porosity and different pore structure often varies greatly. The permeability estimated by the traditional core sample regression analysis method has low accuracy, and the nuclear magnetic resonance (NMR) logging method is affected by the hydrocarbon of the reservoir. In this paper, the defined parameter can effectively quantify the difference of pore structure. Based on regression analysis of core measurement data, the model with optimal factor parameters of permeability calculation is established. This method combines the advantages of empirical models and pore structure models in calculating permeability. The results show that the method can effectively improve the accuracy of permeability. It has been successfully applied to the tight sandstone gas reservoir of He3 member in Hangjinqi area, Ordos Basin, China. Compared with other permeability theoretical models, it provides a more accurate and practical method for calculating permeability.
ISSN:1996-1073
1996-1073
DOI:10.3390/en12152859