Charge-Complementary Polymersomes for Enhanced mRNA Delivery

Messenger RNA (mRNA) therapies have emerged as potent and personalized alternatives to conventional DNA-based therapies. However, their therapeutic potential is frequently constrained by their molecular instability, susceptibility to degradation, and inefficient cellular delivery. This study present...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutics 2023-12, Vol.15 (12), p.2781
Hauptverfasser: Kim, HakSeon, Ahn, Yu-Rim, Kim, Minse, Choi, Jaewon, Shin, SoJin, Kim, Hyun-Ouk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Messenger RNA (mRNA) therapies have emerged as potent and personalized alternatives to conventional DNA-based therapies. However, their therapeutic potential is frequently constrained by their molecular instability, susceptibility to degradation, and inefficient cellular delivery. This study presents the nanoparticle "ChargeSome" as a novel solution. ChargeSomes are designed to protect mRNAs from degradation by ribonucleases (RNases) and enable cell uptake, allowing mRNAs to reach the cytoplasm for protein expression via endosome escape. We evaluated the physicochemical properties of ChargeSomes using H nuclear magnetic resonance, Fourier-transform infrared, and dynamic light scattering. ChargeSomes formulated with a 9:1 ratio of mPEG-b-PLL to mPEG-b-PLL-SA demonstrated superior cell uptake and mRNA delivery efficiency. These ChargeSomes demonstrated minimal cytotoxicity in various in vitro structures, suggesting their potential safety for therapeutic applications. Inherent pH sensitivity enables precise mRNA release in acidic environments and structurally protects the encapsulated mRNA from external threats. Their design led to endosome rupture and efficient mRNA release into the cytoplasm by the proton sponge effect in acidic endosome environments. In conclusion, ChargeSomes have the potential to serve as effective secure mRNA delivery systems. Their combination of stability, protection, and delivery efficiency makes them promising tools for the advancement of mRNA-based therapeutics and vaccines.
ISSN:1999-4923
1999-4923
DOI:10.3390/pharmaceutics15122781