Numerical Study of Particle Margination in a Square Channel Flow with Red Blood Cells

Red blood cells flow near the axis in a small vessel, known as axial accumulation. This causes a region called the cell-free layer, which does not contain red blood cells near the wall. Then, small particles such as platelets come out to the cell-free layer. This phenomenon is called platelet margin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluids (Basel) 2022-03, Vol.7 (3), p.96
Hauptverfasser: Oh, Dongig, Ii, Satoshi, Takagi, Shu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Red blood cells flow near the axis in a small vessel, known as axial accumulation. This causes a region called the cell-free layer, which does not contain red blood cells near the wall. Then, small particles such as platelets come out to the cell-free layer. This phenomenon is called platelet margination. In this study, related to this phenomenon, direct numerical simulations were conducted using the immersed boundary method. The effects of the shear rate, channel size, and hematocrit value were investigated on the pressure-driven flow in a straight tube with a square cross-section. The simulation results indicated that the margination rate, which is the ratio of the distance traveled in the flow direction to the margination distance in the wall direction, is independent of the shear rate. The effect of the channel size on platelet margination was found to be well scaled by introducing a dimensionless parameter, which included the shear rate and effective area of the particle movement. It was also found that the margination rate varied nonlinearly with the tube hematocrit. This was due to the volume exclusion effect of red blood cells, which facilitated or hindered the motion of particles depending on the hematocrit. The relationship between the stable position of the particles near the corner and the width of the cell-free layer was also found. Furthermore, velocity fluctuations normalized by wall shear rate in a cross-section collapsed to one curve in the presented simulations. This indicates that the lateral force acting on the particles increases linearly with the shear rate.
ISSN:2311-5521
2311-5521
DOI:10.3390/fluids7030096