Hydrogen Production from Wave Power Farms to Refuel Hydrogen-Powered Ships in the Mediterranean Sea

The maritime industry is a major source of greenhouse gas (GHG) emissions, largely due to ships running on fossil fuels. Transitioning to hydrogen-powered marine transportation in the Mediterranean Sea requires the development of a network of hydrogen refueling stations across the region to ensure a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrogen 2024-09, Vol.5 (3), p.494-518
Hauptverfasser: Pompodakis, Evangelos E., Orfanoudakis, Georgios I., Katsigiannis, Yiannis A., Karapidakis, Emmanuel S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The maritime industry is a major source of greenhouse gas (GHG) emissions, largely due to ships running on fossil fuels. Transitioning to hydrogen-powered marine transportation in the Mediterranean Sea requires the development of a network of hydrogen refueling stations across the region to ensure a steady supply of green hydrogen. This paper explores the technoeconomic viability of harnessing wave energy from the Mediterranean Sea to produce green hydrogen for hydrogen-powered ships. Four promising island locations—near Sardegna, Galite, Western Crete, and Eastern Crete—were selected based on their favorable wave potential for green hydrogen production. A thorough analysis of the costs associated with wave power facilities and hydrogen production was conducted to accurately model economic viability. The techno-economic results suggest that, with anticipated cost reductions in wave energy converters, the levelized cost of hydrogen could decrease to as low as 3.6 €/kg, 4.3 €/kg, 5.5 €/kg, and 3.9 €/kg for Sardegna, Galite, Western Crete, and Eastern Crete, respectively. Furthermore, the study estimates that, in order for the hydrogen-fueled ships to compete effectively with their oil-fueled counterparts, the levelized cost of hydrogen must drop below 3.5 €/kg. Thus, despite the competitive costs, further measures are necessary to make hydrogen-fueled ships a viable alternative to conventional diesel-fueled ships.
ISSN:2673-4141
2673-4141
DOI:10.3390/hydrogen5030028