p-Numerical Semigroups of Generalized Fibonacci Triples

For a nonnegative integer p, we give explicit formulas for the p-Frobenius number and the p-genus of generalized Fibonacci numerical semigroups. Here, the p-numerical semigroup Sp is defined as the set of integers whose nonnegative integral linear combinations of given positive integers a1,a2,…,ak a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2023-04, Vol.15 (4), p.852
Hauptverfasser: Komatsu, Takao, Laishram, Shanta, Punyani, Pooja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a nonnegative integer p, we give explicit formulas for the p-Frobenius number and the p-genus of generalized Fibonacci numerical semigroups. Here, the p-numerical semigroup Sp is defined as the set of integers whose nonnegative integral linear combinations of given positive integers a1,a2,…,ak are expressed in more than p ways. When p=0, S0 with the 0-Frobenius number and the 0-genus is the original numerical semigroup with the Frobenius number and the genus. In this paper, we consider the p-numerical semigroup involving Jacobsthal polynomials, which include Fibonacci numbers as special cases. We can also deal with the Jacobsthal–Lucas polynomials, including Lucas numbers accordingly. An application on the p-Hilbert series is also provided. There are some interesting connections between Frobenius numbers and geometric and algebraic structures that exhibit symmetry properties.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym15040852