p-Numerical Semigroups of Generalized Fibonacci Triples
For a nonnegative integer p, we give explicit formulas for the p-Frobenius number and the p-genus of generalized Fibonacci numerical semigroups. Here, the p-numerical semigroup Sp is defined as the set of integers whose nonnegative integral linear combinations of given positive integers a1,a2,…,ak a...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2023-04, Vol.15 (4), p.852 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a nonnegative integer p, we give explicit formulas for the p-Frobenius number and the p-genus of generalized Fibonacci numerical semigroups. Here, the p-numerical semigroup Sp is defined as the set of integers whose nonnegative integral linear combinations of given positive integers a1,a2,…,ak are expressed in more than p ways. When p=0, S0 with the 0-Frobenius number and the 0-genus is the original numerical semigroup with the Frobenius number and the genus. In this paper, we consider the p-numerical semigroup involving Jacobsthal polynomials, which include Fibonacci numbers as special cases. We can also deal with the Jacobsthal–Lucas polynomials, including Lucas numbers accordingly. An application on the p-Hilbert series is also provided. There are some interesting connections between Frobenius numbers and geometric and algebraic structures that exhibit symmetry properties. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym15040852 |