Identification of a putative kinase interacting domain in the durum wheat catalase 1 (TdCAT1) protein
Catalases are crucial antioxidant enzymes that regulate plants responses to different biotic and abiotic stresses. It has been previously shown that the activities of durum wheat catalase proteins (TdCAT1) were stimulated in the presence of divalent cations Mn2+, Mg2+, Fe2+, Zn2+, and Ca2+. In addit...
Gespeichert in:
Veröffentlicht in: | Heliyon 2023-08, Vol.9 (8), p.e18916-e18916, Article e18916 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Catalases are crucial antioxidant enzymes that regulate plants responses to different biotic and abiotic stresses. It has been previously shown that the activities of durum wheat catalase proteins (TdCAT1) were stimulated in the presence of divalent cations Mn2+, Mg2+, Fe2+, Zn2+, and Ca2+. In addition, TdCAT1s can interact with calmodulins in calcium-independent manner, and this interaction stimulates its catalytic activity in a calcium-dependent manner. Moreover, this activity is further enhanced by Mn2+ cations. The current study showed that wheat catalase presents different phosphorylation targets. Besides, we demonstrated that catalase is able to interact with Mitogen Activated Proteins kinases via a conserved domain. This interaction activates wheat catalase independently of its phosphorylation status but is more promoted by Mn2+, Fe2+ and Ca2+ divalent cations. Interestingly, we have demonstrated that durum wheat catalase activity is differentially regulated by Mitogen Activated Proteins kinases and Calmodulins in the presence of calcium. Moreover, the V0 of the reaction increase gradually following the increasing quantities of Mn2+ divalent cations. Such results have never been described before and suggest i) complex regulatory mechanisms exerted on wheat catalase, ii) divalent cations (Mn2+; Mg2+; Ca2+ and Fe2+) act as key cofactors in these regulatory mechanisms. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2023.e18916 |