Switching of K-Q intervalley trions fine structure and their dynamics in n-doped monolayer WS2

Monolayer group Ⅵ transition metal dichalcogenides (TMDs) have recently emerged as promising candidates for photon-ic and opto-valleytronic applications. The optoelectronic properties of these atomically-thin semiconducting crystals are strongly governed by the tightly bound electron-hole pairs such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Opto-Electronic Advances 2023-01, Vol.6 (4), p.27-37
Hauptverfasser: Jiajie Pei, Xue Liu, Andrés Granados deláguila, Di Bao, Sheng Liu, Mohamed-Raouf Amara, Weijie Zhao, Feng Zhang, Congya You, Yongzhe Zhang, Kenji Watanabe, Takashi Taniguchi, Han Zhang, Qihua Xiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monolayer group Ⅵ transition metal dichalcogenides (TMDs) have recently emerged as promising candidates for photon-ic and opto-valleytronic applications. The optoelectronic properties of these atomically-thin semiconducting crystals are strongly governed by the tightly bound electron-hole pairs such as excitons and trions (charged excitons). The anomal-ous spin and valley configurations at the conduction band edges in monolayer WS2 give rise to even more fascinating valley many-body complexes. Here we find that the indirect Q valley in the first Brillouin zone of monolayer WS2 plays a critical role in the formation of a new excitonic state, which has not been well studied. By employing a high-quality h-BN encapsulated WS2 field-effect transistor, we are able to switch the electron concentration within K-Q valleys at conduc-tion band edges. Consequently, a distinct emission feature could be excited at the high electron doping region. Such fea-ture has a competing population with the K valley trion, and experiences nonlinear power-law response and lifetime dy-namics under doping. Our findings open up a new avenue for the study of valley many-body physics and quantum optics in semiconducting 2D materials, as well as provide a promising way of valley manipulation for next-generation entangled photonic devices.
ISSN:2096-4579
DOI:10.29026/oea.2023.220034