Reversal of the Pinning Direction in the Synthetic Spin Valve with a NiFeCr Seed Layer
The effect of the seed layers on the magnetic properties of the giant magnetoresistance thin films has received a lot of attention. Here, a synthetic spin valve film stack with a wedge-shaped NiFeCr seed layer is deposited and annealed following a zero-field cooling procedure. The film crystallinity...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2022-06, Vol.12 (12), p.2077 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of the seed layers on the magnetic properties of the giant magnetoresistance thin films has received a lot of attention. Here, a synthetic spin valve film stack with a wedge-shaped NiFeCr seed layer is deposited and annealed following a zero-field cooling procedure. The film crystallinity and magnetic properties are studied as a function of the NiFeCr seed layer thickness. It is found that the exchange coupling field from the IrMn/CoFe interface and the antiferromagnetic coupling field in the synthetic antiferromagnet both increase as the seed layer thickness increases, indicating the perfection of film texture. In this film, the critical thickness of the NiFeCr seed layer for the formation of the ordered IrMn3 texture is about 9.3 nm. Meanwhile, a reversal of the pinning direction in the film is observed at this critical thickness of NiFeCr. This phenomenon can be explained in a free energy model by the competition effect between the exchange coupling and the interlayer coupling during the annealing process. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano12122077 |