Chemical shift prediction of RNA imino groups: application toward characterizing RNA excited states

NH groups in proteins or nucleic acids are the most challenging target for chemical shift prediction. Here we show that the RNA base pair triplet motif dictates imino chemical shifts in its central base pair. A lookup table is established that links each type of base pair triplet to experimental che...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-03, Vol.12 (1), p.1595-1595, Article 1595
Hauptverfasser: Wang, Yanjiao, Han, Ge, Jiang, Xiuying, Yuwen, Tairan, Xue, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:NH groups in proteins or nucleic acids are the most challenging target for chemical shift prediction. Here we show that the RNA base pair triplet motif dictates imino chemical shifts in its central base pair. A lookup table is established that links each type of base pair triplet to experimental chemical shifts of the central base pair, and can be used to predict imino chemical shifts of RNAs to remarkable accuracy. Strikingly, the semiempirical method can well interpret the variations of chemical shifts for different base pair triplets, and is even applicable to non-canonical motifs. This finding opens an avenue for predicting chemical shifts of more complicated RNA motifs. Furthermore, we combine the imino chemical shift prediction with NMR relaxation dispersion experiments targeting both 15 N and 1 H N of the imino group, and verify a previously characterized excited state of P5abc subdomain including an earlier speculated non-native G•G mismatch. Prediction of chemical shifts is critical for extracting structural and dynamic information from biomolecular NMR data. Here the authors report an RNA imino group chemical shift predictor, showing that the imino chemical shifts of a residue are dictated by the surrounding base pair triplet.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-21840-x