Computational analysis of missense variant CYP4F23 (V433M) in association with human CYP4F2 dysfunction: a functional and structural impact

Cytochrome P450 4F2 (CYP4F2) enzyme is a member of the CYP4 family responsible for the metabolism of fatty acids, therapeutic drugs, and signaling molecules such as arachidonic acid, tocopherols, and vitamin K. Several reports have demonstrated that the missense variant CYP4F2*3 (V433M) causes decre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC cell biology 2023-05, Vol.24 (1), p.17-13, Article 17
Hauptverfasser: Farajzadeh-Dehkordi, Mahvash, Mafakher, Ladan, Samiee-Rad, Fatemeh, Rahmani, Babak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cytochrome P450 4F2 (CYP4F2) enzyme is a member of the CYP4 family responsible for the metabolism of fatty acids, therapeutic drugs, and signaling molecules such as arachidonic acid, tocopherols, and vitamin K. Several reports have demonstrated that the missense variant CYP4F2*3 (V433M) causes decreased activity of CYP4F2 and inter-individual variations in warfarin dose in different ethnic groups. However, the molecular pathogenicity mechanism of missense V433M in CYP4F2 at the atomic level has not yet been completely elucidated. In the current study, we evaluated the effect of the V433M substitution on CYP4F2 using 14 different bioinformatics tools. Further molecular dynamics (MD) simulations were performed to assess the impact of the V433M mutation on the CYP4F2 protein structure, stability, and dynamics. In addition, molecular docking was used to illustrate the effect of V433M on its interaction with vitamin K1. Based on our results, the CYP4F2*3 variant was a damaging amino acid substitution with a destabilizing nature. The simulation results showed that missense V433M affects the dynamics and stability of CYP4F2 by reducing its compactness and stability, which means that it tends to change the overall structural conformation and flexibility of CYP4F2. The docking results showed that the CYP4F2*3 variant decreased the binding affinity between vitamin K1 and CYP4F2, which reduced the activity of CYP4F2*3 compared to native CYP4F2. This study determined the molecular pathogenicity mechanism of the CYP4F2*3 variant on the human CYP4F2 protein and provided new information for understanding the structure-function relationship of CYP4F2 and other CYP4 enzymes. These findings will aid in the development of effective drugs and treatment options.
ISSN:2661-8850
2661-8850
1471-2121
DOI:10.1186/s12860-023-00479-0