Direct Rating Estimation of Enlarged Perivascular Spaces (EPVS) in Brain MRI Using Deep Neural Network
In this article, we propose a deep-learning-based estimation model for rating enlarged perivascular spaces (EPVS) in the brain’s basal ganglia region using T2-weighted magnetic resonance imaging (MRI) images. The proposed method estimates the EPVS rating directly from the T2-weighted MRI without usi...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2021-10, Vol.11 (20), p.9398 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we propose a deep-learning-based estimation model for rating enlarged perivascular spaces (EPVS) in the brain’s basal ganglia region using T2-weighted magnetic resonance imaging (MRI) images. The proposed method estimates the EPVS rating directly from the T2-weighted MRI without using either the detection or the segmentation of EVPS. The model uses the cropped basal ganglia region on the T2-weighted MRI. We formulated the rating of EPVS as a multi-class classification problem. Model performance was evaluated using 96 subjects’ T2-weighted MRI data that were collected from two hospitals. The results show that the proposed method can automatically rate EPVS—demonstrating great potential to be used as a risk indicator of dementia to aid early diagnosis. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11209398 |