Dynamic cortical connectivity alterations associated with Alzheimer's disease: An EEG and fNIRS integration study

Emerging evidence indicates that cognitive deficits in Alzheimer's disease (AD) are associated with disruptions in brain network. Exploring alterations in the AD brain network is therefore of great importance for understanding and treating the disease. This study employs an integrative function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage clinical 2019-01, Vol.21, p.101622-101622, Article 101622
Hauptverfasser: Li, Rihui, Nguyen, Thinh, Potter, Thomas, Zhang, Yingchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Emerging evidence indicates that cognitive deficits in Alzheimer's disease (AD) are associated with disruptions in brain network. Exploring alterations in the AD brain network is therefore of great importance for understanding and treating the disease. This study employs an integrative functional near-infrared spectroscopy (fNIRS) – electroencephalography (EEG) analysis approach to explore dynamic, regional alterations in the AD-linked brain network. FNIRS and EEG data were simultaneously recorded from 14 participants (8 healthy controls and 6 patients with mild AD) during a digit verbal span task (DVST). FNIRS-based spatial constraints were used as priors for EEG source localization. Graph-based indices were then calculated from the reconstructed EEG sources to assess regional differences between the groups. Results show that patients with mild AD revealed weaker and suppressed cortical connectivity in the high alpha band and in beta band to the orbitofrontal and parietal regions. AD-induced brain networks, compared to the networks of age-matched healthy controls, were mainly characterized by lower degree, clustering coefficient at the frontal pole and medial orbitofrontal across all frequency ranges. Additionally, the AD group also consistently showed higher index values for these graph-based indices at the superior temporal sulcus. These findings not only validate the feasibility of utilizing the proposed integrated EEG-fNIRS analysis to better understand the spatiotemporal dynamics of brain activity, but also contribute to the development of network-based approaches for understanding the mechanisms that underlie the progression of AD. •Dynamic brain networks of healthy controls and patients with mild AD are documented via an integrative fNIRS-EEG approach.•FNIRS-based constraints are employed as spatial priors for EEG source localization.•Mild AD group reveals weaker connectivity to the orbitofrontal and parietal regions in high alpha band and beta band.•AD-linked brain networks are characterized by lower degree and clustering coefficient at the frontal area.•AD group also reveals higher index values for these graph-based indices at the superior temporal sulcus.
ISSN:2213-1582
2213-1582
DOI:10.1016/j.nicl.2018.101622