Exact solutions of an unsteady thermal conductive pressure driven peristaltic transport with temperature-dependent nanofluid viscosity

Keeping in view the impact of temperature-dependent nanofluid viscosity on peristaltic transport, the present study is an analytical analysis to scrutinize an unsteady flow saturated with carbon nanotubes (CNT) in an irregular channel of finite measure. The ultimate goal is to obtain an exact soluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Case studies in thermal engineering 2022-07, Vol.35, p.102124, Article 102124
Hauptverfasser: Sher Akbar, Noreen, Maraj, E.N., Noor, N.F.M., Habib, Muhammad Bilal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Keeping in view the impact of temperature-dependent nanofluid viscosity on peristaltic transport, the present study is an analytical analysis to scrutinize an unsteady flow saturated with carbon nanotubes (CNT) in an irregular channel of finite measure. The ultimate goal is to obtain an exact solution for the stream function of the pressure-driven peristaltic flow of nanofluid with temperature-dependent nanofluid viscosity. Influences of CNT on temperature, axial and transverse velocities, effective thermal conductivity and on pressure gradient are studied analytically and displayed graphically by varying various flow constraints using a Mathematica software. The key findings of the analysis revealed that SWCNT nanofluids have lower pressure gradient, hence higher axial velocity than that of MWCNT whereas the trapped boluses are growing in size with increasing heat generation and decreasing thermal Grashof number. Since the transverse velocity for MWCNT nanofluid can be improved with higher viscosity, this study outlines details of a micro push in the movement of nanofluids as a supplement to medical applications especially for drugs delivery systems in peristaltic pumping and pharmacological engineering.
ISSN:2214-157X
2214-157X
DOI:10.1016/j.csite.2022.102124