CLUSplus: A decision tree-based framework for predicting structured outputs

We present CLUSplus, a machine learning framework based on decision trees specialized for complex predictive modeling tasks. We provide the scientific community with an open source Java framework that unifies several major research directions in the machine learning field. The framework supports mul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SoftwareX 2023-12, Vol.24, p.101526, Article 101526
Hauptverfasser: Petković, Matej, Levatić, Jurica, Kocev, Dragi, Breskvar, Martin, Džeroski, Sašo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present CLUSplus, a machine learning framework based on decision trees specialized for complex predictive modeling tasks. We provide the scientific community with an open source Java framework that unifies several major research directions in the machine learning field. The framework supports multi-target prediction, i.e., the simultaneous prediction of multiple continuous values, multiple discrete values, and hierarchically organized discrete values. Furthermore, CLUSplus enables state-of-the-art predictive performance via ensemble learning, exploitation of unlabeled data via semi-supervised learning, and data understanding via feature importance and building interpretable models. Out of a wide array of machine learning frameworks available today, very few support complex predictive modeling tasks and, to the best of our knowledge, none support all of the aforementioned functionalities.
ISSN:2352-7110
2352-7110
DOI:10.1016/j.softx.2023.101526