On the Correspondence between Display Postulates and Deep Inference in Nested Sequent Calculi for Tense Logics
We consider two styles of proof calculi for a family of tense logics, presented in a formalism based on nested sequents. A nested sequent can be seen as a tree of traditional single-sided sequents. Our first style of calculi is what we call "shallow calculi", where inference rules are only...
Gespeichert in:
Veröffentlicht in: | Logical methods in computer science 2011-01, Vol.7, Issue 2 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider two styles of proof calculi for a family of tense logics,
presented in a formalism based on nested sequents. A nested sequent can be seen
as a tree of traditional single-sided sequents. Our first style of calculi is
what we call "shallow calculi", where inference rules are only applied at the
root node in a nested sequent. Our shallow calculi are extensions of Kashima's
calculus for tense logic and share an essential characteristic with display
calculi, namely, the presence of structural rules called "display postulates".
Shallow calculi enjoy a simple cut elimination procedure, but are unsuitable
for proof search due to the presence of display postulates and other structural
rules. The second style of calculi uses deep-inference, whereby inference rules
can be applied at any node in a nested sequent. We show that, for a range of
extensions of tense logic, the two styles of calculi are equivalent, and there
is a natural proof theoretic correspondence between display postulates and deep
inference. The deep inference calculi enjoy the subformula property and have no
display postulates or other structural rules, making them a better framework
for proof search. |
---|---|
ISSN: | 1860-5974 1860-5974 |
DOI: | 10.2168/LMCS-7(2:8)2011 |