The effect of continuous natural roughness onhydraulic jump characteristics on the stone ramps

Introduction: The hydraulic jump happens when flow transfers from supercritical regime to subcritical regime. The hydraulic jump on smooth bed is called the classic hydraulic jump. One way to increase the energy dissipation in a hydraulic jump is to roughen the bed. Elements including stabilizers an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Majallah-i āb va khāk 2017-01, Vol.29 (5), p.1095-1104
Hauptverfasser: M. F. Maghrebi, B. Mirzendehdel
Format: Artikel
Sprache:per
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction: The hydraulic jump happens when flow transfers from supercritical regime to subcritical regime. The hydraulic jump on smooth bed is called the classic hydraulic jump. One way to increase the energy dissipation in a hydraulic jump is to roughen the bed. Elements including stabilizers and baffle blocks are commonly used as the energy dissipators in stilling basins to stabilize the location and decrease the length and conjugate depths of the hydraulic jumps. If roughness elements are placed uniformly on the bed and orthogonal to the flow direction, the formed jump is addressed as the hydraulic jump on rough bed. Recently, implementing short energy dissipaters and environment friendly rough beds have attracted attention and justify more research in these fields. Recent studies have addressed hydraulic jump on rough beds ([14], [5], and [12]). Relative roughness parameter first defined by Rajaratnam to investigate the jump characteristics and other researchers then used this parameter to investigate the characteristics of jump on rough bed. In this research, similar experiments to Pagliara et al (5) are designed to study continuous and natural rough beds. Materials and Methods: All the experiments have been arranged and carried out in the hydraulic laboratory of Ferdowsi University, Mashhad Iran. Hydraulic jump characteristicswere measured in a horizontal rectangular flume, 0.30 m wide, 0.50 m deep, and 11 m long, with smooth glass side walls.The rough bed was simulated by gluing a layer of uniform gravel material with middle diameter 3.5mm and 11mm on a glass plate which was placed on the flume, throughout its length .In the physical model, to simulate a supercritical flow with three constant initial depths including , 1.5 and ,a steel sluice gate is installed. Furthermore, to stabilize the location ofhydraulic jump and create a free-surface jump, a sharp-crested weir with the same width as the channel width is installed at the end of the flume. Water contraction usually occurs after the sluice gate is avoided by a steel plate welded on the sluice gate. So, the initial depth equals the gate opening. According to the experimental procedure, after placing theuniform roughness heights on channel bed, the pump runs and water flows slowly into the flume. Then, discharge increases to reach the desired value and the sluice gate opening is set up to have the hydraulic jump formed at a distance of ahead of the gate. These circumstances maintain enough for
ISSN:2008-4757
2423-396X
DOI:10.22067/jsw.v29i5.31267