A Split Ring Resonator-Based Metamaterial for Microwave Impedance Matching with Biological Tissue
A metamaterial lens based on a split ring resonator (SRR) array has been designed and optimized to improve the focusing and the penetration depth in human biological tissue of a microwave beam irradiated by a substrate integrated waveguide (SIW) cavity backed patch antenna. The impedance matching of...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2020-10, Vol.10 (19), p.6740 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A metamaterial lens based on a split ring resonator (SRR) array has been designed and optimized to improve the focusing and the penetration depth in human biological tissue of a microwave beam irradiated by a substrate integrated waveguide (SIW) cavity backed patch antenna. The impedance matching of the antenna loaded with human tissue is strongly improved. The simulations have been performed by using CST Microwave Studio®. A prototype of the device has been fabricated with the printed board circuits (PCB) process and has been characterized using a Network Analyzer and an antenna measurement system in anechoic chamber. A novel microwave applicator for hyperthermia therapy of skin cancer could be developed. The performances of the proposed applicator have been evaluated in terms of measured S11 scattering parameter modulus and simulated power loss density. The obtained results indicate that an SRR-based metamaterial is a promising solution for external microwave applicators to employ in dermatology. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10196740 |