Electrical resistance of the current collector controls lithium morphology

The electrodeposition of low surface area lithium is critical to successful adoption of lithium metal batteries. Here, we discover the dependence of lithium metal morphology on electrical resistance of substrates, enabling us to design an alternative strategy for controlling lithium morphology and i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-07, Vol.13 (1), p.3986-3986, Article 3986
Hauptverfasser: Oyakhire, Solomon T., Zhang, Wenbo, Shin, Andrew, Xu, Rong, Boyle, David T., Yu, Zhiao, Ye, Yusheng, Yang, Yufei, Raiford, James A., Huang, William, Schneider, Joel R., Cui, Yi, Bent, Stacey F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The electrodeposition of low surface area lithium is critical to successful adoption of lithium metal batteries. Here, we discover the dependence of lithium metal morphology on electrical resistance of substrates, enabling us to design an alternative strategy for controlling lithium morphology and improving electrochemical performance. By modifying the current collector with atomic layer deposited conductive (ZnO, SnO 2 ) and resistive (Al 2 O 3 ) nanofilms, we show that conductive films promote the formation of high surface area lithium deposits, whereas highly resistive films promote the formation of lithium clusters of low surface area. We reveal an electrodeposition mechanism in which radial diffusion of electroactive species is promoted on resistive substrates, resulting in lateral growth of large (150 µm in diameter) planar lithium deposits. Using resistive substrates, similar lithium morphologies are formed in three distinct classes of electrolytes, resulting in up to ten-fold improvement in battery performance. Ultimately, we report anode-free pouch cells using the Al 2 O 3 -modified copper that maintain 60 % of their initial discharge capacity after 100 cycles, displaying the benefits of resistive substrates for controlling lithium electrodeposition. The deployment of lithium metal batteries is forestalled by poor control over the deposition morphology of lithium. Here, the authors discover that high electrical resistance can be leveraged for controlling lithium morphology and enabling high-performing lithium metal batteries.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-31507-w