Acetazolamide modulates intracranial pressure directly by its action on the cerebrospinal fluid secretion apparatus

Background Elevated intracranial pressure (ICP) is observed in many neurological pathologies, e.g. hydrocephalus and stroke. This condition is routinely relieved with neurosurgical approaches, since effective and targeted pharmacological tools are still lacking. The carbonic anhydrase inhibitor, ace...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluids and barriers of the CNS 2022-06, Vol.19 (1), p.1-53, Article 53
Hauptverfasser: Barbuskaite, Dagne, Oernbo, Eva K, Wardman, Jonathan H, Toft-Bertelsen, Trine L, Conti, Eller, Andreassen, Saren N, Gerkau, Niklas J, Rose, Christine R, MacAulay, Nanna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Elevated intracranial pressure (ICP) is observed in many neurological pathologies, e.g. hydrocephalus and stroke. This condition is routinely relieved with neurosurgical approaches, since effective and targeted pharmacological tools are still lacking. The carbonic anhydrase inhibitor, acetazolamide (AZE), may be employed to treat elevated ICP. However, its effectiveness is questioned, its location of action unresolved, and its tolerability low. Here, we determined the efficacy and mode of action of AZE in the rat . Methods We employed in vivo approaches including ICP and cerebrospinal fluid secretion measurements in anaesthetized rats and telemetric monitoring of ICP and blood pressure in awake rats in combination with ex vivo choroidal radioisotope flux assays and transcriptomic analysis. Results AZE effectively reduced the ICP, irrespective of the mode of drug administration and level of anaesthesia. The effect appeared to occur via a direct action on the choroid plexus and an associated decrease in cerebrospinal fluid secretion, and not indirectly via the systemic action of AZE on renal and vascular processes. Upon a single administration, the reduced ICP endured for approximately 10 h post-AZE delivery with no long-term changes of brain water content or choroidal transporter expression. However, a persistent reduction of ICP was secured with repeated AZE administrations throughout the day. Conclusions AZE lowers ICP directly via its ability to reduce the choroid plexus CSF secretion, irrespective of mode of drug administration. Keywords: CSF secretion, ICP, Hydrocephalus, IIH, Choroid plexus, HCO.sub.3.sup.- transporters
ISSN:2045-8118
2045-8118
DOI:10.1186/s12987-022-00348-6