Improving Adversarial Robustness via Distillation-Based Purification

Despite the impressive performance of deep neural networks on many different vision tasks, they have been known to be vulnerable to intentionally added noise to input images. To combat these adversarial examples (AEs), improving the adversarial robustness of models has emerged as an important resear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2023-10, Vol.13 (20), p.11313
Hauptverfasser: Koo, Inhwa, Chae, Dong-Kyu, Lee, Sang-Chul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite the impressive performance of deep neural networks on many different vision tasks, they have been known to be vulnerable to intentionally added noise to input images. To combat these adversarial examples (AEs), improving the adversarial robustness of models has emerged as an important research topic, and research has been conducted in various directions including adversarial training, image denoising, and adversarial purification. Among them, this paper focuses on adversarial purification, which is a kind of pre-processing that removes noise before AEs enter a classification model. The advantage of adversarial purification is that it can improve robustness without affecting the model’s nature, while another defense techniques like adversarial training suffer from a decrease in model accuracy. Our proposed purification framework utilizes a Convolutional Autoencoder as a base model to capture the features of images and their spatial structure.We further aim to improve the adversarial robustness of our purification model by distilling the knowledge from teacher models. To this end, we train two Convolutional Autoencoders (teachers), one with adversarial training and the other with normal training. Then, through ensemble knowledge distillation, we transfer the ability of denoising and restoring of original images to the student model (purification model). Our extensive experiments confirm that our student model achieves high purification performance(i.e., how accurately a pre-trained classification model classifies purified images). The ablation study confirms the positive effect of our idea of ensemble knowledge distillation from two teachers on performance.
ISSN:2076-3417
2076-3417
DOI:10.3390/app132011313