Existence of weak solutions for quasilinear Schrödinger equations with a parameter
In this paper, we study the following quasilinear Schrödinger equation of the form \begin{equation*} -\Delta_{p}u+V(x)|u|^{p-2}u-\left[\Delta_{p}(1+u^{2})^{\alpha/2}\right]\frac{\alpha u}{2(1+u^{2})^{(2-\alpha)/2}}=k(u),\qquad x\in \mathbb{R}^{N}, \end{equation*} where $p$-Laplace operator $\Delta_{...
Gespeichert in:
Veröffentlicht in: | Electronic journal of qualitative theory of differential equations 2020-01, Vol.2020 (41), p.1-20 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the following quasilinear Schrödinger equation of the form \begin{equation*} -\Delta_{p}u+V(x)|u|^{p-2}u-\left[\Delta_{p}(1+u^{2})^{\alpha/2}\right]\frac{\alpha u}{2(1+u^{2})^{(2-\alpha)/2}}=k(u),\qquad x\in \mathbb{R}^{N}, \end{equation*} where $p$-Laplace operator $\Delta_{p}u={\rm div}(|\nabla u|^{p-2}\nabla u)\ (1 |
---|---|
ISSN: | 1417-3875 1417-3875 |
DOI: | 10.14232/ejqtde.2020.1.41 |